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Abstract. The paper describes a Visual System based on a Chorus of
Shape Categorization Modules (C-SCM) inspired by the biological visual
system. As in “Representation and Recognition in Vision” by Shimon
Edelman, the shape recognition problem is tackled by specially trained
SRMs (shape recognition modules), able to express the similarity of a
given shape with the fundamental shape of the SRM. The categorization
decision in a given context is based on a SCM (shape categorization mod-
ule), consisting of the chorus of SRMs of the shapes defined in that con-
text. Finally, a classifier of the C-SCM Visual System can be constructed
based on the chorus of SCMs of all the system’s known contexts. The
power of the C-SCM visual system is given by its ability to define on its
own, using as input only basic features, optimal complex features, and
based on them to create abstract models of shapes or shape categories.
The behavior of such systems, having different training algorithms for
the SRM’s, and different designs for the SCM’s and C-SCM, are tested
on the COIL-100 library.

1 Introduction

1.1 About object categorization

Object recognition is about recognizing specific objects like “my yellow car”. In
the case of object categorization, the the goal is no longer to match an object
which was already encountered, to a model stored internally by the system. The
new goal is to be able to make pertinent decisions regarding a new perceived
object, based on the previous knowledge acquired by the system, by giving a more
abstract response like “this is a car”. Such a system requires higher level cognitive
reasoning, in other words the system should posses the necessary “intelligence”
which allows him to distinguish visual object classes not only individual objects.

In the quest for a reliable model of an artificial visual system, able to cat-
egorize the objects from its environment, several classes of theories have been
developed:

1. Structural decomposition based theories (eg.[2]). An object is represented by
a set of generic standard components and the relationships between them.
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This theories are suitable for simple tasks, in which the environment where
the objects are situated is not so complex. The problems of this methods are
the need to find the best standard components which are to be detected, and
the standard component’s detection reliability. Another big problem is the
instability of description in terms of standard components, problem which
stems from the possibility of decomposing a shape in elementary parts in a
number of different ways.

2. Geometric constraints based theories (eg.[3]). An object is represented by a
geometrical model. The problems of this methods are linked to the reliability
of the geometric feature extraction and of the feature correspondence algo-
rithms. The poor performance of this steps can make a system based on this
kind of approaches completely unreliable.

3. Multidimensional feature spaces based theories (eg.[4]). An object is rep-
resented by a point or a cloud in a multidimensional feature space. This
theories are more general and also more close to the representations that
appear in the real biological visual systems.

The theory presented in this paper is part of the class of multidimensional feature
spaces based theories. The main idea of the theory is to try to model the way
the biological visual systems behave in the context of object categorization.

1.2 An abstract model of the biological visual system and possible
parallels with artificial vision systems

Nature offers us a model, the biological visual system, always able to answer
to a recognition or categorization problem, learning from its experience and
adapting its knowledge continuously. So, it is natural to consider the design of
the biological visual system [5], appropriate to follow in the development of an
artificial general purpose visual system. In the process of formulating such a
theory, a range of problems appear. The most important one is linked to the
fact that nobody knows exactly how the biological visual system actually works.
All the data we have at our disposal are experimental data, and the correlations
between all the acquired knowledge in this domain is not so easy to achieve.

In the biological visual systems (Fig.1), as a concrete example the human
visual system is used, in the first stage the light entering the eye is detected by
the retina. Retina, an array of photo-receptors on the rear surface of the eye,
encodes this detected light levels in electric signals. At the next step this electric
signals are transmitted through the optic tract to the lateral geniculate nucleus
(LGN) of the thalamus, situated at the base of each side of the brain. From the
LGN the signals travels to the primary visual cortex (V1) at the rear of the
brain. Here the first stage of the cortical processing of vision takes place. The
output generated from this area goes to many different higher cortical areas of
the brain where further higher complexity processing will take place.

A visual system which mimics the biological visual systems must implement
at least the following processing steps:
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Fig. 1. Abstract representation of the biological visual system

1. real space to image space projection of the visual information, received at
the input by the system (eyes optical system functionality).

2. image space to measurement space mapping, detecting raw features (retina
functionality)

3. measurement space to simple feature space mapping, which based on raw
features defines and detects simple features (primary visual cortex V1 func-
tionality)

4. simple feature space to complex feature space mapping (higher cortical areas
functionality).

The system should exhibit the same hierarchical organization as the biological
system: in V1, the neurons are organized in neuron columns which react to the
same raw features received from the measurement space, and in the rest of the
cortical area, one can identify cortical regions which give similar reactions to the
same simple features, received from V1.

In a simplified model, the cortical area of the brain can be modeled as a com-
plex feature space, defined by active landmark modules, corresponding to specific
cortical regions. An active landmark module exhibits a high response to a specific
shape, and when faced with another shape, a lower response, proportional with
the similarity between the active landmark’s specific shape and the input shape.
Different complex feature spaces are assigned to different levels of abstraction.
So, in a complex feature space a point can represent a view of a shape, a shape,
a shape class or a group of shape classes. Like the grouping of cortical regions (a
group of cortical regions responding to more general shape models), the points
and manifolds from a complex feature space combine hierarchically.
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As in [1] we define the distal shape space as the external world of shapes, the
prozimal shape space as a context dependent complex feature space and the no-
tion of similarity as a proximity metric in the proximal shape space. To this end,
the prozimal shape space is locally approximated as metric space. When defin-
ing similarity, the problem of arbitrariness [6](similarity is observer biased), the
problem of context [7](similarity is context biased) and the problem of asymme-
try[8] should be addressed. A context dependent similarity notion defined as a
metric function deals with this problems.

1.3 Overview of the paper

Section 2 describes the architecture and the construction of a general shape
categorization module SCM the building block of our Visual System. Section 3
describes the C-SCM Visual System constructed using SCMs defined on different
contexts. In section 4 the behavior of a C-SCM Visual System is tested on the
COIL-100 [9] library. Section 5 concludes the paper.

2 Architecture of a SCM

The first stage of a SCM, consists in a mapping F from a distal shape space
to a prorimal shape space, with the properties of preservation of distinctness
(distinct points from distal shape space project to distinct points in prozimal
shape space) and full similarity spectrum preservation (neighboring points in the
distal shape space project to neighboring points in the prozimal shape space). The
SCM assumes that the instances of a shape form a manifold in the distal shape
space, so the F mapping will project a manifold from the distal shape space,
to a manifold (an active landmark) in the proximal shape space, maintaining
its topological properties. Due to the discrete nature of the data acquisition
process, the SCM must be able to generalize from sparse data, so a manifold
(active landmark) in the prozimal shape space is approximated by interpolation
with high dimensional Gaussian basis functions.

In the second stage of the SCM, based on the manifolds (active landmarks)
obtained in the prozximal shape space and the similarity measure defined on the
prozimal shape space, categorization decisions can be inferred by the SCM.

2.1 The distal shape space to proximal shape space mapping

Until now, the concepts of distal shape space and proximal shape space were
introduced, and a similarity measure was defined on them. When the goal is to
construct an artificial visual system the main focus is on the proximal shape
space, or how the system should internally represent the world. In order for the
artificial visual system to be able to work with concepts in the proximal shape
space, first a projection of the distal shape space objects into its internal, or
proximal shape space is necessary to be performed by the system.

The minimal requirements of this mapping are:
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1. preservation of distinctness: the mapping should be a one-to-one mapping,
distinct points in the distal shape space are mapped to distinct points in the
proximal shape space

2. full similarity spectrum preservation: the mapping should preserve the struc-
ture of the distal shape space, two points which are nearest neighbor in the
distal shape space must remain the same also in the proximal shape space

Formally, can be defined as:

F:D—>P

F=f4°f3°f2°f1

where: D - distal shape space; P - proximal shape space;

Di stal Shape Space | mage Space

My Yel | ow Car

Fig. 2. The imaging component f; : D — I

The imaging component f; (Fig.2) has the same functionality as the eye in
the biological optical system. The image space I is the space on which the image
views of the real shape are defined. This component is in fact a projection of
the current view, as is perceived by the observer, of a real object (distal space
object) in a 2 dimensional Euclidean space. In an artificial system this step is
performed by the optical device used for the image acquisition. Depending on
the type of image accepted by the next processing level, different filters or image
preprocessing modules can be part of this step.

The measurement component f» (Fig.3) mimics the functionality of the retina
photo-receptors. In the same way in which the retina photo-receptors detect raw
features, and transmits them as electric signals to the next stages, the measure-
ment component extracts raw basic image features and the resulting measure-
ment vector is passed to the next level for further processing. The dimensionality
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| mage Space Measur enent Space
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Fig. 3. The measurement component fa : I — M

of the measurement space M space is given by the number of raw features ex-
tracted by the measurement component, from the image representation of a
perceived view of a distal shape space object. The dimensionality of the mea-
surement space depends on the accuracy of the measurement component, and
also on the type of input required by the next higher level components of the F
mapping, and usually is high-dimensional.

Measur enent Space Feat ure Space

@

Fig. 4. The feature detection component f3 : M — F

The feature detection component f3 (Fig.4), mimics the processing which
occurs within the lateral geniculate nucleus and the primary visual cortex of
a biological visual system. At this stage from the raw measures obtained by
the measurement component, through specific processing simple features are
detected. The features detected by the system at this stage are basic visual
features like edges, corners, color structures etc. So, the features space F is
similar to the simple feature space of a biological visual system.
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Fig. 5. The cognitive component fs : FF — P

The cognitive component f; (Fig.5), mimics the operations which take place
in the higher cortical areas. At this stage using the simple features detected at
the previous level, the system infer complex features based on which is able to
recognize or categorizes a perceived instance of a shape, as being a representation
of that real shape. The cognitive component can be viewed at its turn as a
composition of several components which map shape representations from lower
level proximal shape spaces to higher level proximal shape spaces (Fig.6). With
each new component the abstraction level of the representation is increased.

Proxi mal Shape Space Hi gher Proxi mal Shape Space
(p-di nensi onal ) (kp-di nensi onal k>1)
Truck

‘_
./

Per sonal car

Fig. 6. Lower level proximal shape space to higher level proximal shape space mapping
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2.2 Implementation of the distal shape space to proximal shape
space mapping

In our artificial visual system, the f; component is implemented by the imaging
device.

The fs component is a raw feature detection module. This component is
implemented by a set of converting and filtering blocks arranged in a pipeline.
In most of the cases the image obtained by an optical device (camera) is in RGB
format. Because this format is far from the representation format of the image
in a biological system, a format more close to the biological visual system, the
HSV representation, is used as the input for the filtering blocks.

—2 X gradient 4,
3 Ny ’

gradient 4,

| gradient dir «Measurement Vector»
[54]

RGB

Fig. 7. RGB to HSV and patching operations

After the hue (H), saturation (S) and value (V) components of the ini-
tial image are obtained, each component image is decomposed in superposing
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tiles(patches) (Fig.7). The superposition of the patches is necessary, in order to
eliminate some errors that may occur in the output of the measurements ex-
traction modules. The errors are generated at the border regions in the case of
considering a disjoint patch decomposition.

In the next step, on each image patch, a sobel type filter is used to obtain 2
measurements per patch, one expressing the magnitude of the “variation” (global
gradient value) and the other the predominant direction of “variation” (predom-
inant direction of gradient). Depending on the type of the patch the notion
of “variation” refers to : hue variation, saturation variation or value (intensity)
variation.

The quality of the measurement information extracted from an image is direct
proportional with the number of patches in which the image is divided. As a
consequence the number of raw features detected from an input image of an
instance of a shape is high. This situation is similar to the biological visual
system where the number of raw features can be considered close to the number
of axons in the optic nerve, around 1 million. Due to this big number of raw
features, the higher stages of the visual information processing must deal with the
curse of dimensionality yielded by this. Because of the course of dimensionality
the number of patches considered in the decomposition of an image is very
important and we should derive a method to find an optimum of this number or
to find a system topology which is able to compensate for sparse input data.

The implementation of the feature detection (f3) and of the cognitive (f4)
mappings are usually treated as two separate problems. The first decision which
needs to be made is what kind of simple features are going to be detected by
the feature detection module: edges, corners, invariants, etc. . After that based
on this features a model of the observed shape is created by the cognitive com-
ponent, by recording the relations between the simple features observed at the
input. At the recognition or categorization step the system searches for a spe-
cific set of features and tries to match the topology of the detected features to
the topology of an already learned shape models. This kind of approach to the
problem is more prone to erroneous results , mainly because of the wrong choice
of the set of simple features that are used to model a shape.

A new approach is used in this paper, approach based on the idea that, the
feature detection step is not explicitly implemented as a separate processing step.
This is done by using as the base element for implementation of such a system a
neural network. Contrary to the traditional approach functionality, this neural
network based system defines its own set of simple features which will be used
to model a complex shape. An external observer of the system has no idea, or is
not interested, what simple features the system is using to model the observed
shapes. This can be an advantage, because the system will be able to define
simple features, which may not be so obvious for an external user, but in the
same time being the best possible set of features which can be used to model
a specific shape. So, the feature detection mapping becomes a hidden internal
process of the system.
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We make the assumption that all the possible instances (different views under
different conditions and transformations) of a real world shape form a shape
manifold in a shape space. In this case, the main goal of the distal shape space
to proximal shape space mapping F' is to project all the shape manifolds from
the distal shape space to the proximal shape space, maintaining in the same
time the topological properties of the manifolds. Because our system will get at
the input sparse information about the distal space manifold of a shape (due
to the discrete nature of the data acquisition process), a method must be found
to ensure that the corresponding manifold constructed in the proximal shape
space emulates “the true complete manifold” of that shape. This is necessary
because the goal is to create a system able to categorize novel instances of a
shape correctly, so a system able to do generalization.

The easiest way to construct a complete manifold of a shape (or try to do
that), if we have only sparse information available, is to construct it by means
of interpolation with high dimensional Gaussian basis functions. A manifold
of a shape in the proximal shape space will look something like in (Fig. 8),
where the color range varying from blue (value 0) to red (value 1) correspond
to the intensity of the basis Gaussian functions. The manifold has the same
characteristics as an energy cloud, with several “hot” spots and with a decreasing
energy value towards the border regions.

This basis functions, also define a subspace of the proximal shape space, the
topological space of that shape, in which each dimension is specified by a basis
function.

Now, talking about the proximal shape space in the context of a categoriza-
tion problem, this shape space can be seen as a space which embeds a collection
of topological subspaces corresponding to the different shapes (in this context
the notion of shape refers to a class of real world shapes, ex “box like shape”),
which are used in the categorization decision process.

Because the shape manifolds embedded in the proximal shape space aren’t
discrete shape manifolds, like the shape manifolds constructed by the discrete
measurement data in the distal shape space, but rather border-less topological
continues subspaces (same as the energy clouds), the proximal shape space can
be viewed as an energy field map described by active landmarks.

In this model, each shape manifold embedded in the proximal shape space is
seen as an energy emitting landmark. A landmark is defined as having a unitary
uniform energy value in a kernel region, and emitting a radial energy signal,
who’s intensity decreases in an exponential fashion when it propagates through
the embedding space (Fig.9). Because the characteristics of the emitted signal
of each landmark and the signal diffusion properties of the embedding space are
known, the position of an arbitrary point in the embedding space can be fully
specified by the vector of the signal intensities of each landmark at that point.
The metric defined on the proximal shape space has the same behavior in the
proximal shape space as the metric defined by the signal intensity of a landmark
in the energy map. The metric defined in the proximal shape space is in fact
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Fig. 8. Example of a 2D shape manifold spanned by 6 HBF basis functions

the result of the F' mapping of the similarity metric defined on the distal shape
space.

The f3 and f; components are implemented by SRMs (shape recognition
module), trained for specific shapes, designed as 3 layer HBFs (Hyper Basis
Function [10]) neural networks, with Gaussian basis functions. Trained to mimic
the behavior of an active landmark, a SRM responds with 1 to an instance of
its associated shape, or with a value in [0,1) proportional with the similarity
distance between the input shape instance and the shape associated with the
SRM.

A HBF architecture (Fig.11), described by the equations from (Fig.10) is
chosen to implement the SRM, instead of a simpler RBF architecture used in
[1], because in this case the basis functions are no longer radial, so the SRM
is able to model more complex shape manifolds. Also, in [10] is proved that
an approximator based on a HBF architecture oscillates less, so it presents a
smoother behavior. The input weights of an HBF type SRM perform an implicit
normalization of the response and an input noise filtering, resulting in a shorter
convergence time of the SRM tuning. The use of exponential basis functions,

11
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Fig. 9. 4 shapes in a proximal space

down-sizes the curse of dimensionality, but is not enough to drop it as a problem
of the system.

An HBF neural network is completely specified by choosing the following
parameters:

1. The number H of radial basis functions;
2. The centers and the position of the basis functions;
3. The input layer weights and the output layer weights;

The number H of radial functions is a critical choice and depending on the ap-
proach can be made a priori or determined incrementally. We will call a learning
algorithm that starts with a fixed number H of radial functions determined a
priori ’static’ , and an algorithm that during the computation is able to add or
delete one or more basis functions ’dynamic’.

A static learning algorithm is also parametric, because the search for the
optimal neural network which models the SRM, corresponds to a search in the
parameter space defined by the fixed number of radial basis functions. A dynamic
learning algorithms changes the parameter space in which it operates, while
adding or deleting radial basis functions.
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Fig.10. Equations of the SRM neural network

Fig. 11. Example of a SRM defined on a 9 dim input space and spanned by 3 HBFs
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1. set global generalization error Err = oo, key views set I. = {view:},
keyviewneszt = viewy; y € [2,...,T], view; € Strain

2.1 Sirain isn’t optimally described by I, so add keyviewnezt to I,

2.2 compute the new basis function width o corresponding to the new I,
as the square of the average L, norm distance between the elements of I
oy = =kl S H VS o [keyview: — keyview||; i € [1... H]

2.3 construct a SRM with o wide basis functions having elements of I. as
key views and with vg; = 1, w; = 1, Vi, k

2.4 Generalized Lloyd Iteration (K-medoid clustering)

2.4.1 let O, and OSRM two empty sets

2.4.2 Yview € Sirain if view € I. then add SRM (view) to O. else add
SRM (view) to OSRM.

2.4.3 Vpr € O, define CL;y, = (pk, Ak) a cluster centered in pg, where Ay the
set of all the elements of the cluster except py, initially empty

2.4.4 Yq € OSRM if CL, is the cluster who’s centroid is the closest to ¢ then
add q to CL,

2.4.5 YCLy clusters, find the new centroid p;*" as the k-medoid of CL,

2.4.6 define the improved O. = {pp*“ |k € [1...H|} and define the im-
proved I. = SRM " (O.) .

2.4.7 compute Erjoyq = EkH:I ;“:rld(A’“)+1 lpee® — di;ll5, dij € CLy.

2.4.8 if step<MaxStep and Er;oyq >suitable threshold then goto 2.4

2.5 if Erjoya < Err then Err = Erjoyq and select keyviewnest € O, with
the smallest sum of square distances to the elements of O., goto 2.1

3. construct the improved SRM as in step 2.3

4- set the limits of the basis function widths, oymin and omaez, the squares of
the min. and max. Ly norm distance between the elements of I..

Fig.12. Network Initialization Algorithm

The learning algorithms are also very different depending on whether the
sample set S is completely available before the learning process or if it is given,
sample by sample, during it. In the former case, off-line learning is possible while
in the latter, an on-line learning approach is needed. While some of the static
algorithms can be adapted for both learning type, the application of the dynamic
one makes sense only in the case of on-line learning.

2.3 Training SRMs with static learning algorithms

A SRM associated to a shape is trained using 2 sets of shape instances Siqi, and
Stest- First the centers (key views) and the initial widths of the basis functions
are determined, then the weights and the basis function widths are tuned.

The number of basis functions of the SRM and the associated shape instances
(key views) are determined by applying the algorithm in (Fig.12). The algorithm,
based on an idea from [1] , is a modified generalized Lloyd vector quantization
[11], applied on the SRM projection of Siqin in the prozimal shape space.
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General forms of the update rules:
wi (n+1) = wi () - 522
Vki (n + ].) = Vki (n) n- m
oi(n+1)=0;(n)—n- 32?%)
are reduced in case of (1) as:
wi (n+1) = w; (n) — - (SRM (n) — 1) - y; (n) — 12
2
vei (n+1) = v (n) + PR gy (n) - wi (n) - (SRM (n) = 1) - hi(n) -
hy(n)? '
e i) _ W'vkei(n)
hZ(n)

cin+1)=0;(n)—2n-hl (n)-0;(n)- (SRM (n) —1) - w; (n) -e 7™

Fig.13. Gradient descent update rules

The SRM’s weights and basis functions widths, that maximize the degree of
fit to an element of Si;qin, hence minimize the error

E =

||M§

, 1 & 1 &
- (1= SRM (view))” + % Z tog g

i=1

l\')lb—l

are found by gradient descent based update rules (Fig.13). The 2nd and 3rd
terms (weight decay terms) of (1) are always equal, because the SRM behaves
like a homogeneous object cooling in time. Hence, at the initial settings (w; = 1,
vi, = 1, Vi, k) we obtain 0 = card (Sgrain) - w-

To train an SRM, a static, offline learning algorithm (Fig.19) with no neg-
ative examples is used. The static learning algorithm described here is also an
offline algorithm, assumed that the training set Si.qi, is completely known at
the beginning of the learning and no new additions will take place.

After the training the SRM is ready to face the real world. By presenting to
the trained SRM, a new image of a shape, the module will react with an output
expressing the similarity of this new image with the shape for which the SRM
was trained.

The SRM will be able to discriminate the images of shapes which are de-
tected at the input, but it will be unable to use directly and immediately this

1.1 call Network Initialization Algorithm (Fig.12) on Sirqin, set Egog =
o

2.1 Yview € Sirain update all w;, vg;, 0; using the update rules from (Fig.13)
with the constraints: w; > 0, vk > 0, Omin < i < Omaz

2.2 set Eg = 0, Yview; € Siest, compute E given by (1). Set Eg =
Zfarld(stest) E (view;)

2.3 if (step<MaxStep and Eg > Err+ % and Eg—Egoq < 0) then Egoq =
Eg, goto 2.1

Fig. 14. Static Visual System Training Algorithm

15



16 George Valentin Voina

acquired knowledge to improve its performance. In order to use the knew ac-
quired knowledge a user intervention is necessary. After an important amount
of new knowledge is obtained by the system the user has to restart the system,
in order to create the new improved SRMs by executing the Static Visual
System Training Algorithm (Fig.19) on the new Si.qi, sets. A new SRM
(representing a class of shapes), can be created only as a result of a user inter-
vention. The user has to specify the new class or classes of shapes, containing the
examples which were classified by the system constructed with the old SRMs,
as being images of unknown shapes.

It is obvious, that this type of system is not the best choice, when someone
wants to construct an independent and evolutionary system for shape catego-
rization.

2.4 Training SRMs with dynamic learning algorithms

The dynamic learning algorithms modify the number of basis functions of the
network, integrating the actions occurring in the initialization and in the refining
phases in an incremental learning algorithm. In this case the topology of the
network is no longer constant and so the final goal of the trained network can
be faster achieved.

The main problem which appears in the process of on-line network structure
extension, is to decide when and where a new basis function must be inserted.

Let Sirqin be an off-line acquired training set of feature vectors which describe
a shape. Considering that the SRM associated to the shape described by Sirgin
has a general topology of the type described in (Fig.10) and (Fig.11). Then for
all basis functions y;,% € [1... H] of the SRM, the following error measures can
be defined:

T
E; = Z (1 — SRM (viewy,)) - y; (2)
k=1
T
B = > |1 - SRM (viewy)| -y (3)
k=1

where:

E; and Efabs) are the contributions to the global error of the network (error
over Sirqin) Of the input feature vector viewy, due to the basis function y;.

When all the errors E; associated with the i-th basis function are all positive

or all negative the condition El(]ff,L) =1 (4) holds. For a different behavior of the

error terms E; inequality p; = El(lf}',‘s) < 1 (5) holds.

When the relation (5) holds for all the basis functions currently defined on
Sirain, then together with the condition Ei(abs) > 0 the necessary condition for
inserting new basis functions in the network is found. This condition can be
expressed by the inequality:
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Ei(abs) _ |Ez| _ E,gabS) (1 _ pz) >0 (6)

This expression is not suitable for the online learning algorithms, but can be
used by considering not a fixed learning set Si;qin, but a window on the least
T learning events, as is done in some incremental learning algorithms. A second
technique consists of using an iterative evaluation of E; and Ez(abs) , where the
contribution due to events in the past, decays exponentially with time:

E(t+)=>1-a)-Ei(t)+a-y®)-1-SRM (@) (7)

B (t+1)=(1-a) B ) +a-y(t)-|1-SRM@®)|  (8)

In what follows based on the previous concepts two dynamic learning algo-
rithms will be presented. Note that both algorithms consider that, the system
was initialized by performing a static learning procedure on an initial training
set Strain-

Dynamic Competitive Learning (DCL) based training (Fig.15)

DCL algorithm presented in [12] is for the most part, an improvement of
the GCS algorithm [13].The algorithm iterates through a cycle in which the
network is first activated, feed-forward on a new input vector view, then the
weights w;,vx; and the radial basis functions widths o; are updated using the
gradient descent method. The position of the basis radial functions are updated
by the on-line clustering algorithm and the neighborhood topology is updated
by a competitive hebbian learning procedure. The algorithm for extending the
network size by adding new basis functions is activated, with a longer period
in order to grant the time for adjusting the network parameters between two
insertion phases.

The insertion procedure considers only a subset of the basis functions, satis-
fying the criterion (6), basis functions which contribute to the 85% of the global
E(abs) of the network. The initialization of the weights and width associated
with the new basis function are chosen in order to reduce as much as possible
the disturbance caused by the new insertion.

Dynamic Regression Trees (DRT) based training (Fig.16)

This algorithm first presented in [12] was inspired by Breiman’s CART al-
gorithm [14] for inducing regression trees. The basic idea consists in recursively
splitting the basis function activation area until a granularity sufficient to fit the
target function is obtained. In our case, the activation area of a basis function,
constructed on the view py is in fact the cluster CLy = (pg, Ax) where py € I,
and Ai C S;. The main idea of the method is that, an DRT based algorithm is
trying to split the clusters when the gradient descent reaches a local minimum.

Adjacent radial functions strongly interact because of overlapping. Therefore,
splitting two adjacent basis functions at the same time could be unnecessary,
because a single split could be sufficient to reduce the error on both basis func-
tions.The strategy of DRT is to split simultaneously, only the basis functions

17
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Let cycle = 0, EdgeGraph = {(kvs,kvy,age) | kve, kvy € I.,age € R}, ind(kv) = the
index of the basis function which is constructed based on kv

1. Activate the network on a new input vector view , add it to Strain , cycle + +

2. Update the neighborhood topology

2.1 Determine the two nearest key views of the SRM, kvq , kva € I. for which the SRM’s
response is the closest to SRM (view).

2.2 If (kvi,kv2,a) € EdgeGraph then a = 0, else EdgeGraph = EdgeGraph U
{(kUh kv, 0)}

2.3 Age the links: V (kv;, kv, a,) € EdgeGraph, i = {1,2} , do a, + +

2.4 Eliminate the old links: V (kvs, kvy,az) € EdgeGraph, if a, > MAXAGE then
EdgeGraph = EdgeGraph \ {(kvs, kvy,az)}

3. Update the positions of the basis functions using, the Generalized Lloyd
Tteration (K-medoid) algorithm on the outputs of the SRM

3.1 let O, and OSRM two empty sets

8.2 Yview € Sirain if view € I. then add SRM (view) to O, else add SRM (view) to
OSRM.

3.3 Vpi, € O, define CLy = (pk, Ar) a cluster centered in py, where Ay the set of all the
elements of the cluster except pg, initially empty

3.4 Vg € OSRM if CL, is the cluster who’s centroid is the closest to ¢ then add ¢ to
CL,

3.5 YCLy, clusters, find the new centroid pz®" as the k-medoid of C'L,

3.6 define the improved O. = {p;*” |k €[l...H]} and define the improved I. =
SRM™!(O.) .

4. Update the SRM weights and widths

4.1 Yview € Sirain compute the error E given by (1), update all w;, vii, 0; using
the update rules from (Fig.13)

4.2 If currentstep < MAXSTEPS and E > ERRORTHRESHOLD and
abs (E (currentstep) — E (currentstep — 1)) > MINVARIATION goto 4.1

5.1 Vkv € I., update the values of Ej,q(xy) and Eggsil)w) using the update rules (7), (8)

5.2 If cycle = MAXCYCLES then goto 6. else goto 1.

6.1 Let E, = 0, 17 = {kv € L | ES5),) — [Binagn| = Eitly (1= pinageny) > 0}
where the condition on which the set is constructed is defined by equation (6)

6.2 Let kv € I?  with the property Elgzsiim(l—mnd(km) =

mazx {Ei(f:g?,)w) (1 = pinagks)) | kv € ICE} and kv, € IP with the property

b b
E;Zd?;cw) (1 = pind(kvs)) = maz {Ei(zd?;w) (1 = pinagkv)) | kv € I, (kv1, kv) € EdgeGraph}
6.3 Select view, € Sirqin situated between kviand kvs and add it to I..
6.4 Initialize the weights and widths associated with the new kv = view: as Wing(views) =

% . (wind(kvl) + wind(kvz))v Vk,ind(viewg) = % : (’Uk,ind(kv'l) + Uk,ind(kvg)) 7k € []- o M]
. f;zleo'f(Ng(U))||v—keyviewi||g
6.5 Vv € {views, kvi,kv2} compute 0,40, = $72e0F(Ng (o))

keyview; € Ng(v), Ng (v) = {kv | (v, kv,a) € EdgeGraph} neighborhood of v

6.6 Let E, = E. + E\ce) 17 =17\ {ku}

6.7 If Ec > 085, E{**) and I” # 0 goto 6.2
7. go to 1.

where:

Fig. 15. Dynamic Competitive Learning (DCL) based training
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Let E;; =error split threshold, WS; =the training set window. The last N
elements perceived by the system.

Let B, =0and t =0and WS; = S;

1. Activate the network on a new input vector view and add it to Strain

2.1 Yview € Sirain compute the error E given by (1), update all w;, v,
o; using the update rules from (Fig.13)

2.2 If currentstep < MAXSTEPS and E > ERRORTHRESHOLD and
abs (E (currentstep) — E (currentstep — 1)) > MINV ARIATION goto
2.1

3.1 Compute the current global error of the system E = % .
Ele (1-SRM (viewi))2, where view; € Sirain

32Let E,(t+1)=E,(t)8+ (1 —p)|E|and t =t +1

3.3 If E; > E;;, then goto 4.1 else goto 1.

4.1 let O, and OSRM two empty sets

4.2 Yview € Sirain if view € I, then add SRM (view) to O. else add
SRM (view) to OSRM.

4.3 Vpi € O, define CLy, = (pg, Ar) a cluster centered in pi, where Ay the
set of all the elements of the cluster except pk, initially empty

4-4 Yq € OSRM if CL, is the cluster who’s centroid is the closest to ¢ then
add q to CL,

4.5 Select the set I® C I, corresponding to the basis functions candidate
for split. The set is constructed such as Vkvs, kv, € IF the condition
S (Yind(kve )> Yind(kve)) = 0 holds.

5. Split all the clusters corresponding to the selected basis functions from IX

5.1 YVCLy,CLy, = (px, Ax),pr € IR, sort Ay in increasing order using the
measure ||q; — pxll3, @ € Ak

5.2 Let (gs,qgeo+1) the pair of consecutive elements of sorted Aj for which
lgz — gz+1]|3 has the smallest value, and select CL,, = (gz, Bz) and
Cqu+1 = (q$+1,Bz+1) where Bm = B$+1 = @, Vq € Ak

5.3 If |lg — g2l < llg — go+1]l; then CLq, = (go, B2 U{q}) else OLq,,, =
(@z+1, Bx U{q})

5.4 Let the new output codebook O. = (Oc \ {pr}) U{¢e, go+1}

5.5 [Initialize the weights and widths of the new keyview’s as

— _ 1
Wind(SRM~1(qa)) = Wind(SRM=1(gq41)) = 2Wind(SRM~1(py))>
— _ 1
Vk,ind(SRM~1(qz)) — Uk,ind(SRM—l(qm+1)) = §”k,md(SRM—1(pk))’k €
1
(L. M], Oind(sra=1(32)) = Tind(SRM=1(gg41)) — 27ind(SRM~1(p))

4.5 Construct the new input codebook as I, = SRM ™' (O.)
goto 1.

Fig.16. Dynamic Regression Trees (DTR) algorithm
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which do not interact among themselves, so only the basis functions for which

the superposition (the scalar product of the basis functions) S (y;, y;) = 0.
The superposition measure can be reduced as:

S(Qi,yj)Z/ yiyjdview
§RM
n2 _hjz'
:/ (e 7 e ;?> dview
%M
hihj\2
:/ e(r"i) dview
§RM

2 2
(ZAL (vhion —vribri) )(EkM=1 (vrjor—visbn;) )

_ /m ) ( > d{ar}ee, (9

2.5 Categorization classifier

The second stage of a SCM, performing the actual categorization, is implemented
as the chorus of all the known SRMs defined in a context. In a context with S
known SRMs, the reaction of the SCM defined on that context, when presented
at the input with the view z of a shape is the vector:

SCM(z) = [Try - (1 — |1 = SRM; (z)]),- - ,Trs - (1 — |1 — SRMs (z)|)] (10)

The T'rg factor from the expression (10) is a trust level assigned to a SRM,
directly proportional with the compactness level (expressed by H) of the proz-
imal shape space manifold of the modeled shape. In general this should de-
pend also on the context. If the averange minimum number of submanifolds
needed to represent the manifold corresponding to an SRM, in a given context,

is kvnog,i, than the trust level assign to each SRM can be given by the expression

log(kvnomin)
Trs log(Hs)

3 Architecture of the C-SCM Visual System

If the categorization problem is posed in a context associated with a limited
region of the distal shape space, the classifier can be further improved, by elim-
inating the influence of the SRMs corresponding to shapes situated outside the
context (eg. Fig.17). To do this, we define the virtual distal shape space of the
context, as a subspace of the proximal shape space, defined by the SRMs of the
context. A shape manifold in the distal shape space is mapped to a manifold in
the wvirtual distal shape space of the context, by projecting each of its points to
a point in the virtual distal shape space. The coordinates of the projected point
are given by the outputs of the SRMs of the context, when presented at the
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input with the corresponding shape instance. For each of the manifolds from the
virtual distal shape space a new SRM is defined and trained. Based on them a
new, context limited SCM, is defined.

Limted context

D e S
Limted context

scm
SR SR
~ I

&
)
I

G obal context

I
Virtual Distal
Shape Space

Virtual Distal

Shape Space

1]
1]

... unknown. . .
shapes

| Di stal Shape Space |

5000 -
Sol oi st SCM —

S| Sl Si Si Si S| S| S|

N A

1

Fig.17. A C-SCM Visual System Topology with 2 sub-contexts

C-SCM Visual System’s global classifier is defined as the chorus of the SCMs
associated with all the known contexts, having as a soloist the SCM of the
global context (the context associated with the distal shape space), eg.(Fig.17).
If besides the global context, the C-SCM Visual System defines K sub-contexts,
than a simple form of the global classifier used to classify a shape view x can be:

C—-SCM (z) ={SCM (z),SCM; (z),--- ,SCMk ()}

(11)

When the C-SCM Visual System is presented at the input with a set of T

views of the same object X (z; € ViewOf(X)) our simple shape classifier is:

X):{

Simple C-SCM Visual System

C—SCM (

3.1

i=1 i=1

1 & 1 & 1 &
T-ZSC’M(mi),T-ZSCMl(a:i),---,T-ZSCMK

i=1

(-'Uz')} (12)

The most simple architecture of a C-SCM Visual System can be defined as the
system associated with the the global context and the context of all the objects
known by the system (Fig.18), having a classifier of the form (13).

C —SCM (z) = {SCM,. (z) ,SCMyp4. ()}

(13)

where: SCMy. = SCM of the global context, SCM¢r,. = SCM of the finite
system known global context and x is a object view.
When the Simple C-SCM Visual System is presented at the input with a set
of T views of the same object X (z; € ViewOf(X)) the response of the shape
classifier looks like:
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C—SCM (X) = {% ST S0Mye (1) % -5 8CMyrge (wi)} (14)

i=1 i=1

This minimal architecture gives just a minimal amount of information, as a
reaction to the external stimuli received by such a C-SCM Visual System. The
quality of the response of the C-SCM Visual System is direct proportional with
the number of different and specialized contexts known by the system, so the
need to have more contexts appear.

Context of the known shapes

E6666688

Virtual Dista
Shape Space

d obal context

... unknown. ..
shapes

| Di stal Shape Space

Fig. 18. Simple C-SCM Visual System

3.2 C-SCM Visual System based on shape category contexts

The next step in developing a more complex system is to create a method through
which the system defines when necessary new contexts. The easiest way is to
create contexts based on outside intervention of a human user. In this case the
outside user asks the system to give a more detailed answer by providing to it
informations necessary to delimit a context in which the outside user is inter-
ested. To have an autonomous C-SCM Visual System, the process of defining
new contexts, should be an internal process of the system, with no outside in-
tervention.
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1. Vi € [1...S5] where S is the number of known objects
begin
1.1 compute the vector SCMykg (i) = % - 32 SCM (i) where
A =number of views of object ¢
1.2 construct the set of pairs
PSCM; = {(j, SCMfrge (3) [J]) | SCMfrge (2) [§] > similarityth,j € [1...5]}
end
2. Define the set of categories SCAT = () and CATsing = () the “category” of
singular objects
3. Initialize SCAT
3.1 create CAT, = {1}
3.2V (j,z) € PSCM;

begin
If 3(1,y) € PSCM; then CAT, = CAT: U {j}
end
3.3 SCAT = SCAT U {CAT:}
4.Vi€[2...95]
begin
4.1 If 3k such that : € CAT, , CAT, € SCAT
then
4.1.1V (j,z) € PSCM;
begin
If 3(i,y) € PSCM; then CAT, = CAT, U{j}
end
else

4.1.2 create CAT; = {i}
4.1.3 VY (j,z) € PSCM;
begin
If 3(i,y) € PSCM; then CAT; = CAT; U {j}
end
4.1.4 SCAT = SCAT U {CAT;}
end
5. VCAT, € SCAT If SizeOf (CATy) =1 then SCAT = SCAT \ {CAT},
CATsing = CATing U {k}

Fig.19. Shape Categories Detection Algorithm
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1. Vk € CATsing create TempCAT, = {k}

2. Given X if 3k for which catdist(X,TempCAT;) = 7+ -
ST, SCMrempeaz, (@) = % - XL, [Tre-(1— |1 — SEM; (@)])] >
similarityth and catdist(X,TempCAT}y) is the maximum value for all
TempCAT,,a € CATsing then

2.1 TempCAT, = TempCAT, |J{w}

2.2. If the previously defined catdist(X,TempC AT}) > identityth then
add the views of the new observed object, to the set of views (Strain) of
the object corresponding to SRMj,, else define SRM,, corresponding to the
new observed object.

2.3. SCAT = SCAT J{TempC ATy} and CATsing = CATsing \ {k}

Fig. 20. New Category Detection Algorithm

First a Simple C-SCM Visual System is constructed having the architecture
described in (Fig.18) an a classifier like in (14). Then using the algorithm from
(Fig.19) the known objects are classified in categories. The generality of the
categories is controlled by a similarity threshold (sets the limit under which
the similarity between 2 objects starts to be vague). As a result a number of
categories containing at least 2 objects are defined, and the rest of the objects
which were not categorized form the set of singular objects.

The last step consist in defining a context for each of the determined shape
categories and for the set of singular objects, and create the more complex C-
SCM Visual System based on the global context, the context of all the objects
known by the system and the newly created contexts.

C-S5CM (.CL') = {SCMgc (x) 7SCMkaC (.CL')} U

SCMcar, (x)--+,SCMcar, (x), SCM,ging (x) » (15)

SizeOf(SCAT)

where: SCMy. = SCM of the global context, SCMyrye = SCM of the
finite system known global context, SCATcar, (2)---,SCMcar, () = SCMs

~~

SizeOf(SCAT)
of the contexts defined on the elements of SCAT, SCM,;,, = SCM of the set
of singular objects and x is a view of an object.

When the C-SCM Visual System is presented at the input with a set of
T views of the same object X (z; € ViewOf(X)) the response of the shape
classifier looks like:
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C-SCM (X) = {% > SCMye (zi), % ) SCMykye (x,-)} U

i=1 i=1

T T
1 1
72 SCMoar, (z:) -+, - Y SCMear. (1) o U

i=1 i=1
~ -~ )

SizeOf(SCAT)

1 T
{ = > SCMying (:cz-)} (16)

i=1

Based on the classifier (16), the C-SCM Visual System will have one of the
next behaviors when presented at the input with the new observed object X
represented by T views having the ID w:

(1) The new observed object is classified as part of a known object cat-
egory C AT, if catdist(X,CAT,) > similarityth and catdist(X,CAT,) is the
maximum value YCAT € SCAT.

1 T 1 SizeOf(CAT,)
catdist(X,CAT,) = T; Size0F (CAT) . ]:21 SCMcar, (z:) [j]| (17)

If 3j such that -7 | SCMcar, (z:) [j] > identityth then add the views of
the new observed object, to the set of views (Siqin) Of the object corresponding
to the j — th term of the SCM¢ar,vector. If no j was found to satisfy the
previous condition then create in the C AT, context a new SRM corresponding
to the new observed object.

(2) If no category from SC AT was found to satisfy the condition catdist(X,CAT,) >
similarityth given in (17) then, try to create a new category which contains the
new observed object and an object from CATy;y,, using an algorithm like in
(Fig.20).

(3) If no category from SC AT was found to satisfy the condition catdist(X, CAT,) >
similarityth given in (17) and no new category can be created then C AT,y =

CATing U {w}

4 Results

4.1 Test of the behavior of the Simple C-SCM Visual System on
the COIL-100 database

The Simple C-SCM Visual System was tested on the COIL-100 [9] library (Fig.
27), a database of 100 shapes, each described by a view sphere of 72 images. The
values of the input features (108 features per image) are obtained by splitting
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Fig. 21. Reaction of the global context SCM to shape 23

5100 0.88755 519 0.885076 523 0882736 521 0.881482 584 0.867933

578 0.663874 538 0.853201

Fig. 22. Reaction of the COIL-100 context SCM to shape 23

-

5150994733 S23 0992745 527 0991135 576 0597581  S69 0.970555

S84 0953627 579095139

Fig. 23. Reaction of the global context SCM to shape 57

597 557 0.906957 S21 0.883637 5460 0.856126

Fig. 24. Reaction of the COIL-100 context SCM to shape 57

537 537 0.936635 S48 0.956053

Fig. 25. Reaction of the global context SCM to shape 41

541 521 0.88371% 5800881222 577 0.874741 565 0.853963

Fig. 26. Reaction of the COIL-100 context SCM to shape 41

S41 565 0,959976
Legend: In each figure the first picture represent the input view sphere, and the next
pictures represent the SRMs of the SCM response vector in a decreasing order of
their response to the input shape.
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Fig. 27. COIL-100 Shape Database

the input image (128x128 pixel) in 36 superposing patches (23x23 pixels), and
computing the mean gradient value, on the hue, saturation and value components
of each patch. The input features were chosen to be as simple as possible, avoiding
user biased prior knowledge. The number of the input features is also limited
to 108 input features, to avoid as much as possible the curse of dimensionality.
For each shape from COIL-100 a SRM is constructed, using 48 images of the
view-sphere as training data and the rest of 24 images as test data. Then the
soloist SCM of the Visual System, corresponding to the global context, and the
SCM corresponding to the COIL-100 context are constructed. The classifier of
the C-SCM Visual System is defined as the system (3) with the constructed
SCMs.

The SCM response vector associated to an input shape in the global context,
is constructed by the SRMs of the global context, which give a bigger than 0.85
average answer to the elements of the input shape view sphere. In the case of
the COIL-100 limited context the threshold of the average answer is considered
to be 0.95. The following behaviors of the C-SCM Visual System were observed:

(1)Good categorization in the global context (Fig.21) and very good catego-
rization in the COIL-100 context (Fig.22), when the input view sphere form a
representative model of the input shape and the input shape is similar to many
shapes from the given context. For instance, the response vector of the global
context SCM, to the view sphere of the shape S28 (Fig.21), already gives some
hints about the shapes similar to S23. Because the scores of the SRMs are only
around 0.88 the categorization is still not 100% trustworthy. The response vector
of the COIL-100 context SCM, to the view sphere of the shape S28 (Fig.22),
accurately finds the shapes similar to S23. By combining the responses of the
COIL-100 context SCM, to the view sphere of the shapes S28, S15, S27, S76,
S69 the small car shape category can be easily identified.

27
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(2)Good recognition but no categorization in both the global and COIL-100
context (Fig.23 and Fig.24), when the input view sphere form a representative
model of the input shape, but the shape is singular in the given context. The
response vector of the global context SCM, to the view sphere of the shape S57
(Fig.23), already give a hint to the recognition the the shape S57, and to the
fact that S57 is a singular shape in the knowledge base of the system. The
response vector of the COIL-100 context SCM, to the view sphere of the shape
S57 (Fig.24), transforms the hints derived in the global context in certain facts.

(3)Bad recognition and vague categorization in both the global and COIL-100
context (Fig.25 and Fig.26), when the input view sphere is not representative for
the input shape and the shape is vague similar to other shapes from the given
context. The response vectors of the global context and of the COIL-100 context
SCMs, to the view sphere of the shape S41 (Fig.25 and Fig.26), don’t give any
hints, about what shapes are similar to S23. This is because the scores are only
just above the thresholds defined in each context.

4.2 Test of the C-SCM Visual System based on shape category
contexts on the COIL-100

The same experimental settings from 4.1 are used but the classifier of the system
is defined as in (16). The first 80 shapes are used to initialize the system and
the last 20 shapes as testing set for the categorization of shapes.

After the system is initialized the COIL-80 (COIL-100 minus the test shapes)
database is split in the categories. Depending on the choise of the similarityth
the system finds less or more categories containing less or more objects. Actu-
ally the choise of the threshold, even in the biological systems is very subjective
depending on the context and on the experience of the observer. In this experi-
ment the choosen values were similarityth = 0.65 and identityth = 0.9 and the
obtained categories are given in (Fig. 28), (Fig. 29), (Fig. 30), (Fig. 31), (Fig.
32), (Fig. 33), (Fig. 34), (Fig. 35) . It can be seen that the categories are not
mutually exclusive (some objects are members of more of one category). This
is maybe because the similarityth was set up to a lower than optimal value,
but is also natural for an object to have features that place it in more than one
category.

CEEC

Fig. 28. Category A
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Fig. 29. Category B

Fig. 30. Category C

Fig. 31. Category D
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Fig. 32. Category E

Fig. 33. Category F

Fig. 34. Category G

Fig. 35. Category H
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5 Conclusion

The C-SCM Visual System inspired by the biological visual system, and by
“Representation and Recognition in Vision” of Shimon Edelman proves to be a
reliable system even in this early stage of implementation. Its power is given by
the ability to define on its own, using as input only basic raw features, optimal
complex features, and based on them to create abstract models of shapes. The
system is also able to deal with the concept of “context”, taking into account
the fact that the process of defining categories is highly dependent on the en-
vironment and on the expectations of the observer. As a result a categorization
decisions is always made in a specific context and is based on a SCM (shape
categorization module), consisting of the chorus of SRMs ( shape recognition
modules associated with the model of a object defined in the given context ) of
the shapes defined in that context. Finally, a classifier of the C-SCM Visual Sys-
tem can be constructed based on the chorus of SCMs of all the system’s known
contexts.
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